urbanists.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
We're a server for people who like bikes, transit, and walkable cities. Let's get to know each other!

Server stats:

525
active users

#spirals

0 posts0 participants0 posts today
Dave Bowman<p>'SAGRADA FAMILIA STEPS'<br>.<br>Spiral staircase inside one of Sagrada Familia’s steeples, designed by Antoni Gaudí, showcasing its intricate geometry.<br>.<br><a href="https://dave-bowman.pixels.com/featured/sagrada-familia-steps-dave-bowman.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">dave-bowman.pixels.com/feature</span><span class="invisible">d/sagrada-familia-steps-dave-bowman.html</span></a><br>.<br><a href="https://mastodon.social/tags/photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>photography</span></a> <a href="https://mastodon.social/tags/photographersunited" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>photographersunited</span></a> <a href="https://mastodon.social/tags/architecture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>architecture</span></a> <a href="https://mastodon.social/tags/monochromephotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monochromephotography</span></a> <a href="https://mastodon.social/tags/spirals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spirals</span></a> <a href="https://mastodon.social/tags/wallart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>wallart</span></a> <a href="https://mastodon.social/tags/BuyIntoArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BuyIntoArt</span></a> <a href="https://mastodon.social/tags/GiftThemArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GiftThemArt</span></a> <a href="https://mastodon.social/tags/ArtMatters" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ArtMatters</span></a> <a href="https://mastodon.social/tags/AYearofArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AYearofArt</span></a> <a href="https://mastodon.social/tags/artistonmastodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>artistonmastodon</span></a> <br><a href="https://mastodon.social/tags/AYearForArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AYearForArt</span></a> <br><a href="https://mastodon.social/tags/fedigiftshop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fedigiftshop</span></a> <a href="https://mastodon.social/tags/MastoArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MastoArt</span></a> <a href="https://mastodon.social/tags/interiordecor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>interiordecor</span></a> <a href="https://mastodon.social/tags/homedecor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>homedecor</span></a> <a href="https://mastodon.social/tags/homedecoration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>homedecoration</span></a> <a href="https://mastodon.social/tags/creativetoots" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>creativetoots</span></a> <a href="https://mastodon.social/tags/artbooster" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>artbooster</span></a> <a href="https://mastodon.social/tags/davebowmanphotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>davebowmanphotography</span></a></p>
Professor Ben Kenobi<p>Research suggests the prevalence of spirals in natural structures may be intrinsically connected to entropy. This insight provides a deeper understanding of how energy distribution and structural efficiency manifest in the universe. <a class="hashtag" href="https://bsky.app/search?q=%23spirals" rel="nofollow noopener noreferrer" target="_blank">#spirals</a> <a class="hashtag" href="https://bsky.app/search?q=%23entropy" rel="nofollow noopener noreferrer" target="_blank">#entropy</a> <a class="hashtag" href="https://bsky.app/search?q=%23nature" rel="nofollow noopener noreferrer" target="_blank">#nature</a> <a class="hashtag" href="https://bsky.app/search?q=%23physics" rel="nofollow noopener noreferrer" target="_blank">#physics</a> <a href="https://phys.org/news/2025-03-nature-spirals-link-entropy.html" rel="nofollow noopener noreferrer" target="_blank">phys.org/news/2025-03...</a><br><br><a href="https://phys.org/news/2025-03-nature-spirals-link-entropy.html" rel="nofollow noopener noreferrer" target="_blank">Why does nature love spirals? ...</a></p>
fheusaig<p><b>Cornish cliff snail</b></p><p><a href="https://friendica.ungzeit.de/search?tag=spirals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spirals</span></a> <a href="https://friendica.ungzeit.de/search?tag=cornwallcoast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cornwallcoast</span></a> <a href="https://friendica.ungzeit.de/search?tag=cornwall" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cornwall</span></a> <a href="https://friendica.ungzeit.de/search?tag=england" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>england</span></a> <a href="https://friendica.ungzeit.de/search?tag=uk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>uk</span></a> <a href="https://friendica.ungzeit.de/search?tag=greatbritain" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>greatbritain</span></a> <a href="https://friendica.ungzeit.de/search?tag=snail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>snail</span></a></p><p>(Ursprünglich am 24. Juli 2019 auf Instagram gepostet.)</p>
Splines<a href="https://pixelfed.social/discover/tags/SeeFeelTouchHug?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#SeeFeelTouchHug</a><br> <br> In both <a href="https://pixelfed.social/discover/tags/art?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#art</a> and <a href="https://pixelfed.social/discover/tags/engineering?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#engineering</a>, one must be able to both <a href="https://pixelfed.social/discover/tags/see?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#see</a> and <a href="https://pixelfed.social/discover/tags/feel?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#feel</a> things that might not be there (yet).<br> <br> We were able to "see" the outlines of the <a href="https://pixelfed.social/discover/tags/scroll?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#scroll</a> surface from <a href="https://pixelfed.social/discover/tags/imageScans?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#imageScans</a> of <a href="https://pixelfed.social/discover/tags/Vignola?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#Vignola</a>'s sketches in <a href="https://pixelfed.social/p/Splines/793169876757012827" rel="nofollow noopener noreferrer" target="_blank">https://pixelfed.social/p/Splines/793169876757012827</a> and <a href="https://pixelfed.social/p/Splines/793215298082967733" rel="nofollow noopener noreferrer" target="_blank">https://pixelfed.social/p/Splines/793215298082967733</a>.<br> <br> Vignola's images are on a 2-dimensional surface, as are the outlines we extracted from them. We believe the scroll surface also exists, but it is not yet manifest in 3-dimensional space. So, like a visually impaired person, we try to "feel" our way to the scroll surface using the outlines as our <a href="https://pixelfed.social/discover/tags/walkingStick?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#walkingStick</a>.<br> <br> This diagram is identical to that in <a href="https://pixelfed.social/p/Splines/793493316852849994" rel="nofollow noopener noreferrer" target="_blank">https://pixelfed.social/p/Splines/793493316852849994</a> but with the rear ends of the horizontal <a href="https://pixelfed.social/discover/tags/primaryCurves?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#primaryCurves</a> marked with R1, R5, and R3, which are paired with F1, F5, and F3, respectively.<br> <br> We know that the scroll surface must <a href="https://pixelfed.social/discover/tags/touch?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#touch</a> the tangent points T1, T2, and so on in front, as well corresponding tangent points in the rear (not shown here to reduce clutter).<br> <br> In <a href="https://pixelfed.social/p/Splines/792906324854792619" rel="nofollow noopener noreferrer" target="_blank">https://pixelfed.social/p/Splines/792906324854792619</a>, I mentioned that a scroll starts with a volute in front and is <a href="https://pixelfed.social/discover/tags/modulated?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#modulated</a> by as many as six volutes of different shapes and sizes as it reaches the back, with the scroll surface tightly hugging the volutes at EACH contact point in ALL 3 dimensions. In other words, it is not sufficient for the scroll surface to "touch" the <a href="https://pixelfed.social/discover/tags/volute?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#volute</a> <a href="https://pixelfed.social/discover/tags/spirals?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#spirals</a> just in the front and rear. It must also "hug" the intermediate <a href="https://pixelfed.social/discover/tags/modulatingSpirals?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#modulatingSpirals</a>. I will first show this technique with 4 modulating spirals using rectangles M, N, P, Q, and R as their frame, and add more later on.<br> <br> Intuitively, we know that if we use curve F3-R3 as our walking stick on the straight vertical extrusion of that curve, we will feel the scroll surface *somewhere* on that extrusion along every point from front to back. We can narrow it down further by excluding portions above and below as we approach rectangle R in the rear.
Microfractal<p>It's <a href="https://mathstodon.xyz/tags/fractalfriday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractalfriday</span></a> again!</p><p><a href="https://mathstodon.xyz/tags/Space" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Space</span></a> </p><p>This is my longest render produced by my program so far (not rendered continuously, total time approximately 2 Days I think)</p><p>Formula: \(z_{n+1}=z_n^2*\frac{z_n^2}{z_n^2+0.001}+c\)</p><p>Coordinates:<br>x: 0.1762135480324081201348<br>y: 0.5722332100694445424486,<br>size: 2.25e-05</p><p>Original resolution: 7680×4320, 400 Samples per pixel</p><p><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/fractalart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractalart</span></a> <a href="https://mathstodon.xyz/tags/mandelbrot" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mandelbrot</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/spirals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spirals</span></a></p>